
JOURNAL OF
SOUND AND
VIBRATION

www.elsevier.com/locate/jsvi

Journal of Sound and Vibration 275 (2004) 1085–1100

Letter to the Editor

Response of open-plane frames on isolated footings to an
excitation characterized by a white noise

Sheikh Minhaj Basha, Mehter M. Allam*

Department of Civil Engineering, Indian Institute of Science, Bangalore 560 012, India

Received 9 June 2003; accepted 13 October 2003

1. Introduction

There are occasions, such as multi-storey buildings founded on soft soil, when it becomes
necessary to consider the effects of deformability of the foundation. These effects are generally
referred to as soil–structure interaction.

While the dynamic analysis of framed structures can be made on the basis that the
superstructure possesses continuously distributed properties, the analysis is complex and
practicable only in the case of very simple structures. More conveniently, a finite element
approach can be adopted in which framed structures are discretized into segments and the
displacements of the interconnecting nodes constitute the generalized co-ordinates (or dynamic
degrees of freedom) of the structure. Kinematic constraints are commonly adopted to reduce the
degrees of freedom in order to save computational efforts without significant loss of accuracy.

As an extreme, for framed structures it is usually assumed that the floor slabs have considerable
in-plane rigidity and that the columns are in-extensible. The mass is assumed to be concentrated at
the floors and to possess only translatory degrees of freedom. An n storey frame has only n
degrees of freedom along its plane. When the foundation is shallow and flexible, translation and
rotation of the footing are included. Thus, an n storey structure yields an n+2 degree of freedom
system with soil–structure interaction. This discretization may be called as the Parmelee model.
The adoption of the Parmelee model for the analysis of tall framed structures with soil–structure
interaction and subjected to horizontal seismic excitation is very common in practice and in the
literature [1–10]. On the other hand, if the physical arrangement of the superstructure can be
retained in the model adopted for analysis under dynamic loads, it will be more consistent with the
model used for analyzing the structure under static loads.

The flexibility of the shallow foundation may best be represented by frequency-dependent soil
impedance [1–3]. However, some studies have shown that frequency-independent impedance is
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adequate to simulate the soil–structure interaction phenomenon [4,5,11,12]. Thus, the
foundation reaction can be represented by the lumped-parameter frequency-independent system
[6,7,13,14]. Although the interactive system does not possess classical normal modes, satisfactory
results can be obtained by assuming that the damping matrix satisfies modal orthogonality
conditions [2,5,7].

Results based on the Parmelee model show that a reduction in the natural frequencies of the
structure occurs due to the introduction of foundation flexibility in the non-interactive
system [1,4,8]. The reduction is greater at low shear wave velocities of the supporting medium
[2,6]. However, a similar trend has been reported when the superstructure is modelled as a
frame [15].

It has been reported [16] that the fundamental period of an open-plane frame obtained
using a shear building model is always less than that obtained for a frame type
idealization. The peak response to horizontal seismic excitation, being governed by the
frequency content of the excitation in case of low damping, is greatly affected by the fundamental
period as well as by the mode shape. Therefore, the response of an open-plane frame
to a horizontal seismic excitation is influenced by the model chosen to represent it in the
analysis.

When soil–structure interaction effects are considered, it has been reported [15] that a
Parmelee model idealization always has a fundamental period larger than a frame-type
idealization. Increasing the ratio of stiffness of floor to column only enhances the
difference in fundamental periods between the two models over a wide range of shear
modulus of the soil, Gs: The difference in mode shapes and periods of vibration ensure
that the response to seismic excitation of an open-plane frame with soil–structure
interaction is dependent on the model adopted to idealize the framed structure. The
studies reported in the literature are based on the Parmelee model and have used both
artificial earthquakes [7,11] and white noise [6] to model the horizontal ground acceleration. These
studies have covered a wide range of fundamental frequencies of the non-interactive
structure, range of height of the top mass to foundation radius ratios, foundation eccentricity
and a practical range of shear modulus Gs values [6,7,11]. The results have established that
soil–structure interaction may be beneficial for certain combinations of these parameters. The
findings may not be applicable when the interactive system is represented by the frame type of
idealization.

The frequency content of real and artificial earthquakes can inadvertently result in resonance in
the soil–structure interactive system so that conclusions drawn from a parametric study become
specific to the excitation chosen. On the other hand, adoption of a white noise, which specifies
equal power in all frequencies, results in each interactive system responding as a narrow band
filter so that more meaningful conclusions can be drawn on the effect of soil–structure interaction
on the dynamic response. Further, closed-form solutions are possible with white noise excitation
whereas, when an actual earthquake is used, the deterministic approach call for adoption of
numerical methods.

In this letter, the role of soil–structure interaction on the response of an open-plane frame to a
ground acceleration idealized by a white noise is examined in terms of shear forces and relative
displacements in the storey columns. A comparision is also made with the response obtained using
a Parmelee idealization.
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2. Correlation functions for the response in terms of column shear and storey sway

The member end actions fi of a typical member m (consisting of two end moments f1 and f2 and
axial force f3) of the frame can be related to the joint displacements of the end nodes of this
member fvigm (indicated in Fig. 1(a)) by

ffigm ¼ ½S�½A�Tfvgm; ð1Þ

ARTICLE IN PRESS

Fig. 1. (a) Plane frame element with three member end forces. (b) Plane frame element with maximum of six member

end forces. (c) Nodal degrees of freedom in a typical frame with soil–structure interaction.

S.M. Basha, M.M. Allam / Journal of Sound and Vibration 275 (2004) 1085–1100 1087



where ½S� is a 3� 3 member stiffness matrix relating the member end actions to the member end
displacements (end rotations x1;x2 and member elongation x3). ½A� is a matrix that relates
member end actions to nodal forces and its transpose relates member end displacements fxig to
nodal displacements fvgm: For a column member which is the object of interest of this study, the
column end moments

f1;m ¼
X

k

SATð1; kÞvk;m; ð2aÞ

f2;m ¼
X

k

SATð2; kÞvk;m: ð2bÞ

The subscript m identifies the member and the nodal displacements fvg associated with it.
The column shear at time t is

shearmðtÞ ¼ ðf1ðtÞ þ f2ðtÞÞ=lm; ð3aÞ

¼
X

k

SATð1 þ 2; kÞvk;mðtÞ=lm ¼
X

k

CSATðkÞvk;mðtÞ=lm ¼ ½CSA�TfvðtÞgm=lm; ð3bÞ

where lm is the length of the member.
The auto-correlation of the column shear is

Rshear;mðtÞ ¼ lim
T-N

1

T

Z T=2


ðT=2Þ
shearðtÞ shearðt þ tÞ dt: ð4Þ

For the open-plane frame shown in Fig. 1(c), the equations of motion for the n-degree of
freedom system under horizontal excitation .ugðtÞ; permitting three degrees of freedom at each
footing base, are

½ms� ½0�

½0� ½mb�

" #
.v

.vb

( )
þ ½C�

’v

’vb

( )
þ

½ks� ½ksf �

½kfs� ½kf þ kss�

" #
v

vb

( )
¼ 


½ms� ½0�

½0� ½mb�

" #
frg.vgðtÞ; ð5Þ

where frg is a vector of 1 and 0’s to account for the degrees of freedom influenced by the
horizontal ground acceleration .ugðtÞ which may be a stationary process. The diagonal matrix ½m�
contains the mass and mass moment of inertia elements associated with the superstructure degrees
of freedom fvg; the diagonal matrix ½mb� refers to the footing degrees of freedom. The matrix ½ks�
contains the stiffness elements associated with the superstructure and the matrix ½kfs� refers to the
degrees of freedom shared by the foundation and the superstructure. The matrix ½kf þ kss� which
pertains to the foundation degrees of freedom incorporates the effect of soil–structure interaction.

If ½f� is the matrix of eigenvectors associated with the undamped form of the equations of
motion (Eq. (5)) during free vibrations and ½o� the corresponding diagonal matrix of natural
frequencies, the nodal displacements at time t and t þ t are

fvðtÞg ¼ ½f�fqðtÞg and fvðt þ tÞg ¼ ½f�fqðt þ tÞg: ð6aÞ

While the nodal displacements of interest (with respect to member m) can be obtained from the
frame nodal displacements fvðtÞg using a selection matrix ½y�m:

fvðtÞgm ¼ ½y�mfvðtÞg ¼ ½y�m½f�fqðtÞg: ð6bÞ
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The equations of motion after uncoupling are, using Eq. (6a)

.qrðtÞ þ 2xror .qrðtÞ þ o2
r qrðtÞ ¼ prðtÞ; ð7aÞ

where xr is the damping ratio associated with the rth mode of vibration (r ¼ 1; 2;y; n). And

prðtÞ ¼ 
ffrg
T½m�frg.vgðtÞ: ð7bÞ

Then the generalized response in the rth mode of vibration is

qrðtÞ ¼
Z

grðlrÞprðt 
 lrÞ dlr; ð8Þ

where grðtÞ is the impulse response and prðtÞ is the excitation.
Or in the frequency domain

QrðoÞ ¼ GrðoÞPrðoÞ; ð9Þ

where GrðoÞ ¼ 1=ðo2
r 
 o2 þ 2ixroroÞ:

Hence, Eq. (4) takes the form, using Eqs. (6a) and (8),

Rshear;mðtÞ ¼ lim
T-N

1

T

1

l2m

Z t=2


t=2

Z
N


N

Z
N


N

½CSA�T½y�m½f�fgrðlrÞprðt 
 lrÞg

� fprðt þ t
 lsÞgsðlsÞg
T½f�T½y�Tm½CSA� dlr dls dt: ð10Þ

Since the excitation is a stationary process,

Rprs
ðt
 ls þ lrÞ ¼ lim

T-N

1

T

Z T=2


T=2
prðt 
 lrÞpsðt þ t
 lsÞ dt: ð11Þ

Eq. (10) reduces to, using Eq. (7b),

Rshear;mðtÞ ¼
1

l2
fBgT

m½ArAs

Z
N


N

Z
N


N

grðlrÞgsðlsÞR.vg
ðt
 ls þ lrÞ dlr dls�fBgm; ð12Þ

where Ar ¼ ffrg
T½m�frg and As ¼ ffsg

T½m�frg: And

fBgT
m ¼ ½CSAT�½y�m½f�:

Since

R.vg
ðt
 ls þ lrÞ ¼

1

2p

Z
N


N

S.vg
ðoÞ eioðt
lsþlrÞ do;

Rshear;mðtÞ ¼
1

2pl2
fBgT

m½ArAs

Z
N


N

G�
r ðoÞGsðoÞS.vg

ðoÞ e
ot do�fBgm: ð13Þ

For input ground acceleration represented by a white noise S0 and to obtain the root mean
square value of the shear in the column member m; Eq. (13) takes the form

Rshear;mð0Þ ¼
1

2pl2
fBgT

mS0½ArAs

Z
N


N

G�
r ðoÞGsðoÞ do�fBgm: ð14Þ

The integrand in Eq. (14) has four simple poles 7os

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 
 x2

s

q
þ ixsos and 7or

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 
 x2

r

q

 ixror;

two of which lie within the contour of integration shown in Fig. 2.
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When the relative transverse displacements of the column member are desired, Eq. (1) can be
more conveniently reformulated so that the element has six member end actions {f} and
displacements fxg (Fig. 1(b)). Since the response to a stationary excitation by a linear system is
also a stationary process, if xiðtÞ and xjðtÞ are the transverse member end displacements,

Rxi
xj
ðtÞ ¼ Lim

T-N

1

T

Z T=2


T=2
ðxiðtÞ 
 xjðtÞÞðxiðt þ tÞ 
 xjðt þ tÞÞ dt

¼Rxi
ðtÞ þ Rxj

ðtÞ 
 Rxij
ðtÞ 
 Rxji

ðtÞ: ð15Þ

The maximum relative transverse displacement for a column member (storey sway) is then

Rxi
xj
ð0Þ ¼ Rxi

ð0Þ þ Rxj
ð0Þ 
 Rxij

ð0Þ 
 Rxji
ð0Þ:

Eq. (15) can be written to obtain the cross-correlation coefficient matrix as

½Rxij
ð0Þ� ¼ ½y�½f�

S0

2p

Z
N


N

G�
r ðoÞGsðoÞ do

	 

½f�T½y�T: ð16Þ

From which the mean square value of the relative displacement (storey sway) of the column
member can be found.

3. Frames adopted and range of soil properties

A 1-bay single-storey and a 1-bay four-storey open-plane frame of flat slab construction were
adopted for the study. Fig. 3(a) and (b) show the plan and elevation of the 1-bay four-storey
frame. For both frames, a bay span of 6m and a uniform storey height of 3 m are considered. The
slab is 0.3 m thick (Fig. 3(b)) and the column dimensions are 0.2m� 0.5 m (Fig. 3(a)). The
interframe spacing is 4 m. In the transverse section, the slabs with columns constitute a flexible
frame as shown shaded in Fig. 3(a).
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The material properties of structural members used for the linear analysis of these frames are
modulus of elasticity of concrete, Ec ¼ 22 GPa and mass density of concrete, r ¼ 2400 kg/m3.

To permit soil–structure interaction in the single- and four-storey frames adopted in the study,
rigid bases of concrete of size 1.0m� 0.5 m and 0.3 m thick were selected as footings. While this
size may be adequate in medium to hard soils for a single-storey frame, and in firm to hard soils
for a four-storey frame, two more footing sizes, namely, 2.0m� 1.0 m and 2.0m� 2.0 m with
thickness of 1.0 m were tried to examine whether increasing the base mass can qualitatively
influence the results. For the same reason, two additional column dimensions, namely,
0.3m� 0.4 m and 0.3 m� 0.3 m, with a storey height of 4.0m have been also attempted so that
the study covers a wide range of fundamental frequency in the non-interactive frame. Thus, for
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Fig. 3. Typical open-plane frame on isolated footings.
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discussion of the results, the frames (both single- and four storey) are classified as Type 1 for the
cases of column sections of 0.2� 0.5m with storey height of 3.0m, Type 2 and Type 3 for column
sections of 0.3� 0.4 and 0.3� 0.3 m, respectively, with storey height for these two types being
4.0m. As a result, the fundamental frequency for the single-storey non-interactive structure varies
from 42 to 17 rad/s. As the column section varies from 0.2� 0.5 to 0.3� 0.3m2 when a frame
model discretization is used. When a shear building idealization is used, the fundamental
frequency ranges between 48 and 17 rad/s. For the four-storey structure, the fundamental
frequency varies between 12 and 5.5 rad/s. Depending on the column section and inter-storey
height for the frame model. In the case of the shear building discretization, the fundamental
frequency varies between 16 and 6 rad/s.

The footing sizes are classified as Footing A (1.0m length in the plane of the frame, 0.5 m width
and 0.3m thickness), Footings B and C which have a length of 2.0 m in the plane of the frame and
thickness of 1.0m but widths of 1.0 and 2.0 m, respectively.

For the non-interactive system, a constant modal damping ratio of 5% was adopted. While the
soil stiffness coefficients in Eq. (5) are actually frequency dependent, to permit decoupling of the
equations they have been approximated by frequency-independent ones. In the current study,
those used by Pais and Kausal [17] have been used. These are suitable for circular and rectangular
foundations. The damping contribution of the soil has been treated in earlier studies [2,5–7] as
frequency independent and it was concluded that the assuming that the damping matrix satisfies
orthogonality conditions yields satisfactory results. In the current study for the interactive
structure, a constant modal damping of 5% in all the modes was assumed.

To render the results of the interactive study realistic, the shear modulus of soil Gs was varied
from 10 to 500MPa so that the results are representative of medium to hard soils where isolated
footings are used to support light to medium weight structures. A value of 0.3 was adopted for the
Poissons’ ratio of soil, ms:

The eigenvalues and eigenvectors of the undamped systems necessary for computing the cross-
correlation functions in Eqs. (14) and (16) were extracted using the Jacobi method.

4. Results and discussion

4.1. Eigenvalues and eigenvectors

In the absence of soil–structure interaction, the fundamental frequencies of the single-storey
structure, Frames 1, 2 and 3 are 41.98, 25.02 and 17.02 rad/s, respectively, when represented by the
frame model. The corresponding values for the shear building model are 47.57, 26.45 and
17.52 rad/s.

In Table 1(a) are indicated the six lowest frequencies of the single-storey frame (Frame 1
Footing A) represented by the frame model over a range of soil shear modulus Gs values. Also
included are the six natural frequencies when soil–structure interaction is not permitted. The
natural frequencies of the interactive frame decrease as the shear modulus of the soil Gs decreases,
and the effect in more pronounced for the fundamental frequency. The ratio of the fundamental
frequency of the frame with soil–structure interaction to that of the frame without soil–structure
interaction (fundamental frequency ratio) is shown in Fig. 4(a). It is seen from Fig. 4(a) that the
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Table 1

Undamped natural frequencies of single-storey frame (rad/s)

Gs (MPa) 10 50 90 150 300 500 Rigid foundation

Mode

(a) Frame model

1 19.31 27.26 30.59 33.42 36.66 38.44 41.98

2 47.49 65.31 66.22 66.97 67.88 68.40 69.54

3 49.34 82.50 90.45 94.22 97.08 98.34 100.60

4 62.02 104.62 133.71 161.65 199.58 224.19 285.50

5 106.55 126.11 147.14 171.42 206.82 230.43 290.13

6 178.95 362.45 475.98 596.01 779.81 949.74 989.97

(b) Parmelee model

1 6.36 13.84 18.08 22.46 29.08 33.88 47.58

2 65.19 90.88 97.51 103.65 115.23 128.56 —

3 245.31 404.34 519.20 655.26 910.77 1167.60 —

Fig. 4. Influence of soil–structure interaction on the fundamental frequency of the single-storey frame: (a) frame model

and (b) Parmelee model.
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fundamental frequency of the frame is affected by soil–structure interaction more severely for
stiffer frames. For any frame, smaller footings with consequent smaller masses and soil impedance
bring greater reduction in the magnitude of the fundamental frequency.

All the natural frequencies obtained for the alternate method of representing the frame, namely,
the Parmelee model are also indicated in Table 1(b) which includes the fundamental frequency of
the single-storey shear building. As reported in the literature [15,16], the shear building yields a
stiffer system than the frame model. When soil–structure interaction is considered, the frame
model is a stiffer system than the Parmelee model at any value of Gs in terms of the fundamental
frequency. The frequencies for the higher modes obtained with the Parmelee model are much
larger than those yielded by the frame model.

The effect of soil–structure interaction on the fundamental frequency of the single-storey
Parmelee model is seen in Fig. 4(b). It is observed that for any Gs: as in the case of the frame
model, the frequency reduction is more severe for the stiffer superstructure with a smaller footing.

Some results on the effect of type of model and Gs on the natural frequencies of the four-storey
frame (Frame 1 Footing A) are available in the literature [15]. Effect of superstructure stiffness
and footing size on the fundamental frequency follow the trends reported for the single-storey
frame. Results regarding this observation are therefore not presented.

4.2. Superstructure response to white noise

4.2.1. Displacement response

The root mean square value (r.m.s.) of the lowest storey sway of the single- and four-storey
structures subjected to a horizontal ground acceleration in the nature of a white noise was
determined by evaluating the cross-correlation matrix of the nodal degrees of freedom defined in
Eq. (16).

In the absence of soil–structure interaction, the r.m.s. value of the storey sway of the single-
storey structure Frames 1, 2 and 3 is 1.37� 10 
2 OS0 m, 3.13� 10
2 OS0 m and 5.63� 10
2 OS0

m, respectively, when represented by the frame model. The corresponding values obtained for the
shear building model are 4.82� 10
3 OS0 m, 1.16� 10
2 OS0 m and 2.16� 10
2 OS0 m,
respectively. That is, the shear building model always yields lesser displacement than the frame
model. This is also true for the lowest storey sway in the four-storey structure. When
soil–structure interaction is considered, the Parmelee model yields, through out the range of Gs

considered, lesser r.m.s. values of lowest storey sway than the frame model both for single- and
four-storey frames.

A displacement ratio may be defined as the ratio of the r.m.s. value of the relative translation of
the lowest storey column of the structure with soil–structure interaction to its value in the absence
of soil–structure interaction.

The variation of the displacement ratio with Gs is indicated for nine combinations of frames
and footing sizes in Fig. 5(a) for the frame model of the single-storey structure and in Fig. 5(b) for
the Parmelee model. For the frame model, the displacement ratio is always greater than unity and
it decreases with increase in the Gs value and progressively tends to unity as Gs tend to infinity
(non-interactive case). For any superstructure stiffness (defined as the fundamental frequency of
the non-interactive structure), the displacement ratio decreases as the size of the footing increases
at any given Gs value. Also for a common footing size, the displacement ratio at any Gs increases
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Fig. 5. (a) Influence of soil–structure interaction on storey sway for single-storey frame—frame model. (b) Influence of

soil–structure interaction on storey sway for single-storey frame—Parmelee model. (c) Influence of soil–structure

interaction on lowest storey sway for four-storey frame—frame model. (d) Influence of soil–structure interaction on

lowest storey sway for four-storey frame—frame model.
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as the superstructure stiffness increases. As Gs increases, the displacement ratio more rapidly
approaches unity for the more flexible superstructure. These observations are repeated for the
four-storey structure (Fig. 5(c)) and clearly indicate that the presence of soil–structure interaction
always results in larger magnitudes of sway.

For the Parmelee model, the displacement ratio is found to be less than unity. The displacement
ratio is found to increase with increase in Gs value unlike the trend seen for the frame model. The
ratio progressively tends to unity as Gs tend to infinity (non-interactive case). The Figs. 5(b) and
(d) show the variation of this ratio with Gs value, superstructure stiffness and footing size for the
single- and four-storey structure, respectively. At any Gs value, the displacement ratio is greater
for the more flexible superstructure mounted on the same size of footing. The ratio increases with
footing size for a given superstructure. The same observations can be made in the case of the four-
storey structure also. Thus, the displacement response of an open-plane frame on isolated footings
to a white noise depends on the model used to idealize the structure.

The role of the number of modes in determining the r.m.s. value of storey sway was checked for
the single-storey structure (Frame 1 Footing A). It was found that the fundamental mode of
vibration contributes over 99.8% of the displacement response and 99.5% of the response in
terms of column shear for the frame model both for the non-interactive structure and when
soil–structure interaction is permitted. For the Shear building model of the four-storey structure,
the fundamental mode of vibration contributed 98.5% of the r.m.s. value of the lowest storey
sway. For the Parmelee model, it was found that the fundamental mode of vibration contributed
about 69.5% of the sway (and also the column shear) for the single-storey structure and 62.5% of
the sway of the lowest storey (and also column shear) in the four-storey structure, at low values of
Gs: For very high values of Gs; this contribution rose to 97.8% and 92.3% for the single- and four-
storey structures, respectively.

4.2.2. Lowest storey column shear

The r.m.s. value of the column shear in the lowest storey was determined using Eq. (14) for the
structure in the non-interactive condition and when soil–structure interaction is permitted. The
shear building model was found to yield a higher r.m.s. value of column shear than the frame
model idealization for the single- and four-storey frame. When soil–structure interaction was
accounted for, the Parmelee model yielded a higher r.m.s. value of the column shear than the
frame model. To study the effect of soil–structure interaction on the column shear, a column shear
ratio may be defined as the ratio of the r.m.s. value of lowest storey column shear obtained at any
Gs to that obtained in the non-interactive condition.

Figs. 6(a) and (c) present the variation of the column shear ratio with Gs for the frame model of
the single- and four-storey structure, respectively, for nine combinations of frame geometries and
footing dimensions. Figs. 6(b) and (d) correspond to the Parmelee model of the single- and four-
storey structures, respectively. The column shear ratio is less than unity through out the range of
Gs values adopted for the four-storey frames regardless of whether the frame model or the
Parmelee model is used to idealize the interactive system. For both models, the ratio is lowest for
stiffer superstructures mounted on smaller footings at any Gs value. The ratio progressively tends
to unity as Gs tend to infinity (non-interactive case). For the single-storey structure idealized by
the Parmelee model, the column shear ratio is always less then unity and tends to unity as Gs

increases. A similar tend is observed when the frame model is used except that it is seen that the
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Fig. 6. (a) Influence of soil–structure interaction on the column shear for single-storey frame—frame model.

(b) Influence of soil–structure interaction on the column shear for single-storey frame—Parmelee model. (c) Influence of

soil–structure interaction on the lowest storey column shear for four-storey frame—frame model. (d) Influence of

soil–structure interaction on the lowest storey column shear for four-storey frame—Parmelee model.
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ratio marginally exceeds unity for a combination of a stiff superstructure and massive foundation
(Frame 1 Footing C) for Gs > 30 MPa.

In this frame the footing mass (Footing C) is comparable to (6% larger) to the superstructure
mass concentrated at the column slab junction (Fig. 1(c)). This is an unlikely combination because
in foundation engineering practice, the weight of the isolated footing rarely exceeds 15% of the
column load. For soft soils, wherever more massive footings are anticipated, a raft foundation is
provided to control differential settlements and the resulting secondary forces in the
superstructure. The column shear ratio was also computed for Frame 1 Footing C in the Gs

range of 0.1–10MPa. It was found that the column shear ratio increases monotonically from
0.292 at Gs ¼ 0:1 MPa to 0.961 at Gs ¼ 10 MPa. However, when the footing thickness was
reduced to 0.5m, it was found that the column shear ratio monotonically increased from 0.909 at
Gs ¼ 10MPa to 0.999 at Gs ¼ 500MPa and did not exceed unity even for very large Gs:

As mentioned earlier, the fundamental mode governs the r.m.s. value of the lowest storey sway
and the column shear induced in the frame model by the white noise excitation. The coefficients of
the fundamental eigenvector for a stiff superstructure frame and three footing sizes (Frame 1
combined with footings A–C) are listed in Table 2 for different Gs values for the single-storey
frame. Nodes 1 and 2 are located at the floor slab-column junction (Fig. 1(c)) while nodes 3 and 4
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Table 2

Coefficients of the fundamental eigenvector for the single-storey frame model

Gs (MPa) Node 1 Node 2 Node 3 Node 4 y1 þ y3 h1 
 h3

h1 v1 y1 h2 v2 y2 h3 v3 y3 h4 v4 y4

Frame 1 Footing A

10 72.2a 
11.6 7.4 72.2 11.6 7.4 12.8 
11.2 24.3 12.8 11.2 24.3 31.7 59.4

50 73.4 
3.8 6.9 73.4 3.8 6.9 5.1 
3.3 22.5 5.1 3.3 22.5 29.4 68.3

120 73.3 
2.3 7.7 73.3 2.3 7.7 3 
1.6 16.7 3 1.6 16.7 24.4 70.3

300 72.9 
1.6 8.9 72.9 1.6 8.9 1.5 
0.8 9.8 1.5 0.8 9.8 18.7 71.4

500 72.8 
1.3 9.4 72.8 1.3 9.4 1 
0.5 6.7 1 0.5 6.7 16.1 71.8

Fixed 72 
1 11 72 1 11 — — — — — — 11.0 72.0

Frame 1 Footing B

10 72.4 
8.8 7.8 72.4 8.8 7.8 13.1 
8.3 16.2 13.1 8.3 16.2 24.0 59.3

50 72.6 
3.2 9.2 72.6 3.2 9.2 4.7 
2.4 7.6 4.7 2.4 7.6 16.8 67.9

120 72.5 
2.0 9.9 72.5 2.0 9.9 2.2 
1.1 3.8 2.2 1.1 3.8 13.7 70.3

300 72.4 
1.4 10.3 72.4 1.4 10.3 1 0.5 1.7 1 0.5 1.7 12.0 71.4

500 72.4 
1.2 10.4 72.4 1.2 10.4 0.6 0.3 1 0.6 0.3 1 11.4 71.8

Frame 1 Footing C

0.1 54.4 
27.5 9.3 54.4 27.5 9.3 25.2 
27.5 9.9 25.2 27.5 9.9 19.2 29.2

1 60.2 
22.1 8.6 60.2 22.1 8.6 23.5 
22 13 23.5 22 13 21.6 36.7

10 70.8 
7.7 8 70.8 7.7 8 11.9 
7.1 13.6 11.9 7.1 13.6 21.6 58.9

50 72.4 
2.7 9.6 72.4 2.7 9.6 3.7 
1.9 5.3 3.7 1.9 5.3 14.9 68.7

120 72.4 
1.7 10.1 72.4 1.7 10.1 1.7 
0.8 2.5 1.7 0.8 2.5 12.6 70.7

300 72.4 
1.3 10.4 72.4 1.3 10.4 0.7 
0.3 1.1 0.7 0.3 1.1 11.5 71.7

500 72.3 
1.1 10.5 72.3 1.1 10.5 0.4 
0.2 0.6 0.4 0.2 0.6 11.1 71.9

aAll coefficient values� 10
4.
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are at the column-footing junction. It is seen that the mode shape is not qualitatively affected by
footing size and mass.

The difference of the 1st and the 7th coefficients (or 4th and 10th) represents the net horizontal
translation of the frame. This is found to increase with Gs increase and it determines the
magnitude of the storey sway. It may be observed from the table that the super-storey nodal
rotation (3rd and 6th coefficients) increases with Gs while the footing nodal rotation (9th and 12th
coefficients) decreases. The algebraic sum of the 3rd and 9th coefficients (or 6th and 12th), which
pertain to node rotations, is found to monotonically decrease as Gs increases. These net rotations,
as reported earlier [15], tend to attenuate the forces generated by storey sway in the fundamental
mode of vibration.

5. Conclusions

The response in terms of r.m.s. value of lowest storey displacements of an open-plane frame on
isolated footings to a ground acceleration idealized by a white noise is found qualitatively affected
by the model used to idealize the interactive system. The frame model yields a larger r.m.s. value
of the lowest storey sway displacement than the shear building model in the non-interactive case.
With soil–structure interaction, the frame model yields larger displacements than the Parmelee
model.

For the frame model, the displacement ratio (defined as the ratio of the r.m.s. value of the
lowest storey sway in the structure with soil–structure interaction to that for the fixed base
structure) is found to be greater that unity. This ratio decreases with increase in Gs: It also
decreases with increase in footing size for a given Gs and superstructure stiffness. The ratio also
increases with increase in superstructure stiffness for any Gs and foundation size.

When the Parmelee model is used to represent the interactive system, the displacement ratio is
always less than unity and tends to increase with Gs: The ratio is found to increase with increase in
footing size for a given superstructure stiffness and Gs: Unlike the frame model, the displacement
ratio decreases with increase in superstructure stiffness for any Gs and footing size.

The shear building model yields a larger value of the r.m.s. value of the lowest storey column
shear than the frame model in the non-interactive case.

The lowest storey column shear ratio is found to less than unity for both the Parmelee model
and the frame model (particularly when the latter represents realistically proportioned frames and
footings). This ratio increases with Gs: For both models, the ratio is lower for stiffer
superstructures on smaller footings.

Thus, while the responses of the two idealizations used to represent open-plane frames on
isolated footings differ in terms of displacements, in terms of lowest storey column shear the two
idealization yield qualitatively similar responses. It may be concluded, in terms of lowest storey
column shear, disregard of soil–structure interaction in the analysis will be conservative.
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